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ABSTRACT

A wide range of passive optical sensor applications

often require the sensor to operate within the atmosphere

while the objects it examines are outside the atmosphere. The

refraction of light by the earth's atmosphere becomes a

significant error source when the objects are at low elevation

angle. When the measurement accuracy at low elevation angle

is important for the sensor application, an accurate

refraction compensation scheme is needed. In this report, we

provide an algorithm that will compensate the error when the

object is at a finite range from the sensor. Sensitivities of

compensation errors to object range error, atmospheric model

mismatch, and possible statistical variations about a given

atmospheric model are also provided.
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I. INTRODUCTION

The refraction of light by the earth's atmosphere

has been observed by astronomers for centuries. In order to

obtain the actual star location, one needs to know the path of

the light ray from the star through the atmosphere. Mathemat-

ical formulas that trace a light ray through nonuniform medium

have been derived and can be used for this purpose.[1]-[2]

With limited atmospheric data around the earth, it was impos-

sible to compensate the bending of light accurately. Until

recently, numerous data have been collected around the earth

in different seasons and at different altitudes. Atmospheric

models have been generated and used to correct these errors,

for example six atmosphere models are provided in a computer

code for atmospheric transmittence and radiance computation

called LOWTRAN 5.[31

A wide range of passive optical sensor applications

often require the sensor operate within the atmosphere while

the objects it examines are outside the atmosphere. When the

measurement accuracy at low elevation angle is important for

the sensor application, an accurate refraction compensation

scheme is needed. There are computer codes, for example

LOWTRAN 5[3], which can be used to calculate the refraction

error and compensate it. It is, however, not applicable to

the case when an object is at a finite range from the sensor.
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Figure 1.1 shows that for each true target position, the

apparant elevation angle can be determined uniquely. However,

given the apparent elevation angle, the true target elevation

is determined only if the range to the target is known. This

is the purpose of this report to provide an algorithm that

will generate the actual refraction error for objects with

finite range and also provide some sensitivites of these

errors to the object range, the underlying atmospheric model

and possible statistical variations about a given atmospheric

model.

The report is organized in five sections. Section 2

provides a brief review of Fermat's principle and derives an

important formula for ray tracing in spherical coordinates.

In Section 3, a specific form of refractive index (a ratio of

velocity of light in vacuum and in a medium) is assumed,

namely, it is a spherically symmetric function about the cen-

ter of the earth. The formula that computes the refraction

error is derived for an object with a range R from the ob-

server. A simplified version of Edlen's expression for the

refractive index of air [41 is used in Section 4 to generate

the refractive index of air at different altitudes from at-

mospheric profiles provided by LOWTRAN 5. The sensitivities

of compensated elevation refraction errors to the object

range, atmospheric model mismatches and the statistical varia-
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OPTICAL PATH
VACUUM 

+ Pw

PP

" DISTANCE OF P1 TO THE
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Fiq. 1.1 Por a given apparent elevation angle, the true
elevation angle and hence the refraction error is a function
of the target range R.
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tions about a given model atmosphere are presented. A surt,*"ry

and conclusion is given in Section 5.
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II. RAY TRACING IN SPHERICAL COORDINATES

When light rays are propagated through an

atmospheric medium of continuously varying refractive index,

they experience a change in direction or refractive bending.

In this section, we will derive the equations for ray tracing

t in spherical coordinates from Fermat's principle.

2.1 Fermat's Principle[l]

Let n be the refractive index of a light ray in a

medium. The optical length of a ray which joins points P1 and

P2 (denoted by [P1P21) is given by

P 2
[PP 2 ] = fp n ds (2.1)

where s is the distance measured along the light ray.

Fermat's principle states that a light ray always

chooses a trajectory that minimizes the optical length. In

mathematical terms, Fermat's principle assumes the form,

[PP 2  = f n ds = minimum. (2.2)

Instead of the optical length, we can introduce the concept of

transit time by dividing (2.2) by the constant c, the velocity

of light in vacuum. Since the velocity of light in a medium

with refractive index n is c/n, we have
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P2(P 1P 2] c fP2 dt. (2.3)

Therefore, Fermat's principle is also known as the principle

of least time.

2.2 The Euler Equations in Spherical Coordinates

Let us consider that the refractive index is a

smooth and continuous function of position in spherical

coordinates and is denoted by n(r,e,fl. We use the definition

of the line element

ds = dr2 - /r2de2 + r 2 sin2 Od 2

= /1 + r2e' 2 + r2 sin 2 0012 dr (2.4)

with

- dr dr (2.5)

to express (2.1) in the form

f2 ,€,)dr = minimum. (2.6)

The function L is given by

, n(r,O,O)/1 + r2 0 2 + r 2 sin 2' (2.7)

In variational calculus, the function L in (2.6) is called the

6



Lagrangian. The solution of (2.6) is well known and can be

obtained by solving the Euler equations:

d aL ad I - = 0, (2.8)dr a8' 30

d aL aL
dr a' - 0. (2.9)

Substituting (2.7) into (2.8) and (2.9), we have

d 2 - 9n nr 2sinecose (210)

dr s s' t- + s' "

2.2d nr sin = S - (2.11)

with

=ds

s > 1. (2.12)

With (2.12) and the chain rule, these equations can be written

as

d 2 do 2 an d2

d- ( n r  an + nr 2sinec se(d-) (2.13)

d 2 .2 d#i an
d (nr sin 21) = 2 • (2.14)

These two equations should be sufficient to determine the ray

trajectory. The corresponding Euler equation for r can be

derived from (2.13) and (2.14) using the constraint (2.4).

7



2.3 The Spherically Symmetric Case

For the case where the refractive index depends only

upon r, (2.13) and (2.14) become

d (nr2 d) nr2sinecos8() 2.15)

d (nr2 sin ) = 0. (2.16)

Integrating (2.16), we have

2 .2e d =_ 2
nr sin 2 ds (2.17)

We may choose the coordinate system so that 0 initially.

Then, C1 = 0 and (2.17) yields

d = 0

for all s. This reduces the problem into a two dimensional

problem, that is

d 2do
(nr .) = 0. (2.18)

This result will be used in the following sections to

calculate the error of angular measurement due to refraction

in an atmosphere when spherical coordinates are specified and

the refractive index of the atmosphere is given.
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III. ELEVATION REFRACTION ERROR FOR SENSOR VIEWING
THROUGH ATMOSPHERE

In this section, we will limit ourselves to describ-

ing the gross characteristics of atmospheric refraction.

Other causes of refraction such as irregularities and varia-

tions within the earth's atmosphere which can not be deter-

mined by theory will not be considered. Furthermore, we

assume the refractive index of the earth's atmosphere is

spherically symmetric and depends only upon r, the distance to

the center of the earth. The non-sphericity of the earth can

be taken into account locally while applying results of this

section by using the effective earth radius at a given lati-

tude and the associated model atmosphere.

Let us consider a light ray passing through P 0 and

P1 in the earth's atmosphere as shown in Figure 3.1. Due to

the spherically symmetric assumption, the trajectory of the

light ray lies in a two dimensional plane and can be repre-

sented in polar coordinate as shown in Figure 3.1. Further-

more, the trajectory, s(r,O), satisfies (2.18), or equivalent-

ly,

2 do
nr T = constant. (3.1)

Let us define the ray inclination angle, *, to be

the angle between the tangential vector of the ray and the

9
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dO
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Fig. 3.1 The trajectory of a light ray lies in a two
dimensional plane.
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local horizon. Then, (3.1) becomes

n r cos * = CO  (3.2)

where C is determined from the initial values of n, r and

at P0 , that is

n r cos 4 = n0 r0 cos *0. (3.3)

If the refractive index were constant between P0 and P1, (for

example, the atmosphere removed), (3.3) reduces to

r 1 cos 41 = r0 cos 1P0" (3.4)

The equality holds when the ray is a straight line. The

angle, *0(=pi) is commonly called the elevation angle of an

object at P1 with respect to an observer at P0. The range, R,

is defined as the distance between P0 and P "

As demonstrated in Figure 3.2, an object at P1

(r=r ) with a range R from P would be observed to have an
1 0

apparent elevation angle i0 at P0 , as if it were seen at PI*

with a range R from P0. If no atmosphere were present, the

true elevation angle would be a as indicated in Figure 3.2.

The elevation error due to refraction is defined as

Aa = 4'0 - a. (3.5)

Let 4I be the angle between the tangential vector of

the ray at P1 and the local horizon as shown in Figure 3.2.

Then, we have

S= 1- 8 (3.6)
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OPTICAL PATHVACUUM

I~ ~ PI

ATMOSPHERE

II EARTH

r0 - APPARENT ELEVATION

a - TRUE ELEVATION

f3 -TOTAL EARTH ANGLE BETWEEN
PO AND P,

CENTER OF EARTH

ELEVATION ERROR

=L = #10 - a

Fig. 3.2 The elevation error due to refraction when the
tarqet is at a range R.
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where

Cos (nr (3.7)

and

f 1 do , (3.8)
r

with CO = n o r 0 cos 0 and no, n, are refractive indexes at r0
and r,, respectively.

rUsing the fact that sin i _ = , (3.1) can be re-

written in the form

nr 2sinl d = CO (3.9)

Substituting (3.9) into (3.8) and sino by a function of cos*,

and using (3.2), we obtain

r C dr
B f- 1 0 (3.10)

0  nr 2 / C0/nr)

Notice that the refractive index n is a function of r. There

is no closed form expression of this integral in general.

Whenever the function n is specified, a can be determined by

numerical integration for a given *0.

For a given set of parameters (a,R,r0 ), Aa is deter-

13
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mined by solving *0' such that

r 1sins - R cosa (3.11)

where 0 is a function of as given by (3.10) and

R ' 2 + r02+ 2Rr 0S inCe.

For the case when n n n0 over [r,,rl], we have

8 cos- (C 0/n 0 r,) -cos- (C0/n~r 0 ) (3.12)

or

8 - 1 (3.13)

It is easy to see that Aa=O and (3.11) is satisfied.

14



IV. REFRACTIVE INDEX OF AIR

As mentioned in Section 1, the refractive index, n,

of a medium for a light ray is defined as

n = v/c (4.1)

where c is the velocity of the light propagating in vacuum

while v is the velocity in the medium. The velocity of a

light ray propagating through the atmosphere varies with

changes in atmospheric composition, pressure, and tempera-

ture. It is strongly wavelength dependent at optical wave-

lengths, but it is not affected appreciably by water vapor.

In this report, we adopt a simplified version of Edlen's

expression for the refractive index of air[ 4I as follows:

0-6 45/2 P
n 1 + 10 x (77.46 + 0.459/x ) (4.2)

where = wavelength in micrometers (um)

P = atmospheric pressure in millibars

T = atmospheric temperature in deqrees Kelvin.

The atmospheric temperature and pressure variations

are principally functions of altitude, season and latitude.

4.1 Model Atmospheres

Six model atmospheres used in LOWTRAN 5(31 (a com-

puter code for atmospheric transmittance and radiance computa-

15
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Fiq. 4.1 The temperature profiles as a function of altitude.
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tion) are considered in this report. The model atmospheres

correspond to the 1962 U.S. standard atmosphere and five

supplementary models; that is, Tropical (15°N), Midlatitude

Summer (450 N, July), Midlatitutde Winter (45*N, January),

Subarctic Summer (600N, July ), and Subarctic Winter (600N,

January). The different models are digitized in 1-km steps

from 0 to 25 km, 5-km steps from 25 to 50 kin, then at 70 km

and 100 km directly as qiven by McClatchey et.al.,[5).

The temperature profiles for these models as a

function of altitude are shown in Figure 4.1. The pressure

profiles are given in Figure 4.2. Figure 4.3 shows the

profiles of pressure to temperature ratio for these models.

Notice that the 1962 U.S. standard model has a pressure to

temperature ratio profile very close to the mean of these

profiles. The refractive modulus

N = (n-1) x 106 (4.3)

which is proportional to the pressure-to-temperature ratio

according to Equation (4.2), is also given in Figure 4.3 at

S= 11UM.

In the next subsection, we will describe the scheme

of calculating the refraction error for an object at a given

range and elevation angle. Sensitivities of refraction errors

to the object range, atmospheric model mismatch will be

presented.

17
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Fig. 4.3 The profiles of pressure to temperature ratio as a
function of altitude.
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4.2 Elevation Refraction Error Computation For A Given
Atmospheric Model

In this subsection, we apply the refraction equations

and various atmospheric models to show how well the true

target elevation can be estimated from the apparent target

elevation and approximate knowledge of the target range and

atmospheric parameters.

Let us assume that the refractive index of a given

atmospheric model for a light ray of wavelength X0 can be ex-

pressed by the following piecewise constant function

n(h) = n. for h i< h < h (4.4)nh nI i-i-- i1

where h is altitude in km and hI's are altitude steps defined

1

in the LOWTRAN 5 code. Substituting (4.4) into (3.10), we

have

-I -1

= cos [C0/nM+ (Re+hT) ] - cos [C0/nM+ 1 (Re+hM)]

M-1 1c s l=  
-1

-[C0/ni+1 ( R e + h i + 1 -Cos- cc0/ni+ (Re+hi)]1(4.5)i=i

+COS- [C 0/n L(R e+h L ) ] - 0

J.A.'2



where

C 0  n L(Re+hs)COS*0 (4.6)

Re is the earth radius and h s , hT are the sensor and target

altitudes, respectively. The indices L and M are determined

by hs and hT as below:

h < h < h
L-1- s L

(4.7)

h M < hT < hM+ I

For a given set of parameters (a,R,h ), an iterative schemes

has been used to solve for *0 such that (3.11) is satisfied,

that is

(Re + h T)sin8 = R cosa (4.8)

where a is a function of ip0 as given in (4.8) and hT is ob-

tained by the following relation:

hT = [(R e+h s)2 + R2 + 2R(R e+h s)sincl 1/ 2 
- R . (4.9)

As illustrated in Figure 4.4, the iterative scheme

used in this report is described as follows:

1. For a given set of parameters (a,R,h s), determine

hT, L and M according to Equations (4.9) and (4.7),

respectively. Let = a and j = 1.

21
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2. Compute aj by (4.5) for the given *0.

3. A new target range is computed as

R= [(Re+hs )2 + (Re+hT) 2 - 2(Re+h s)(Re+hT)cosl
1 / 2

and the associated elevation angle as

-1 ~ iDR
a. = cos [(Re+hT)sinaj/R

The difference of a and aj is

Aa. = a - a..) J

4. If

aIjJ < e (tolerance limit of the algorithm). (4.10)

go to step 5. Otherwise set

j = j + 1

0 = 0+

and go to step 2.

5. The elevation error due to refraction is computed as

A =0 - a

and the iteration procedure stops.

Figure 4.5 shows uncompensated elevation errors due

to refraction in V radians as a function of the actual object

elevation angle with different ranges (from 500 km to w) from

a sensor at an altitude of 15 km. The atmospheric model used

here is the 1962 U.S. standard atmosphere provided by LOWTRAN

5. In the case where the range information of the target is

23
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Fig. 4.5 The uncompensated elevation errors due to
atmospheric refraction.
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not available, the elevation angle is compensated for a preset

range, say 1000 km in the example shown in Figure 4.6. Bias

errors for targets at ranges of 500, 1000 and - km are shown

in Figure 4.6 for the sensor presented in Figure 4.5. For

other atmospheric models, bias errors due to mismatched range

follow similar trends and magnitudes as those with the 1962

U.S. standard profile; they are shown in Figure 4.7. For a

mismatched atmospheric profile, Figure 4.8 shows bias errors

for objects at a common range of 1000 km for all atmospheric

models which are compensated by the 1962 U.S. standard profile

with the true range. The maximum refraction bias that

includes range and model mismatches is presented in Figure 4.9

with thereference model and range indicated. This figure

presents a spread of elevation biases over a wide range of

atmospheric mismatches. For actual applications, the

atmospheric profile is known to a certain accuracy.

Mismatches presented in Figure 4.9 will only occur in a few

extreme cases. A statistical model of the atmospheric profile

should be used to evaluate the elevation errors in a

statistical sense.

4.3 A Statistical Model For Atmospheric Uncertainties

It would be very complicated to express atmospheric

temperature and pressure variations with a statistical model.

To evaluate the elevation bias due to refraction, we only need

25
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Fig. 4.6 The bias errors for targets at range indicated when

the elevation angle is compensated for a preset range.
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Fig. 4.7 The bias errors due to mismatched range setting in
the compensation for different atmospheric models.
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Fig. 4.8 The bias errors due to mismatched atmospheric model
in the compensation for a matched range setting.
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Fiq. 4.9 The maximum refraction bias that includes the range

and reference model mismatches.
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to know the pressure to temperature ratio. It is much

simpler to model the fluctuations of this ratio. As we have

seen in Figure 4.3, the variations of this ratio are very

small for a wide range of atmospheric models. As mentioned

previously, the 1962 U.S. standard atmosphere model has a

pressure to temperature ratio very close to the mean of the

six atmospheric models considered. In this report, we

construct a statistical model of the pressure to temperature

ratio for an atmosphere which has mean profile identical to

the 1962 U.S. Standard profile as follows:

(P/T)i = (P/T)i+ - (z i+-zi)(A z(P/T)i + a iui; 1i=,2,..,34

(P/T) = 0, (4.11)34

where

Az (P/T)i = (Pi+i/Ti+1 - Pi/Ti)/(zi+1-zi)

Pi = Atmospheric pressure in millibars of the 1962 U. S.1

Standard atmosphere at altitude zi

T. = Atmospheric temperature in degrees Kelvin of the1

1962 U.S. Standard atmosphere at altitude zi

a = Standard deviation of A z(P/T)i which is a half of

the sample standard deviation of the six atmospher-

ic models provided by LOWTRAN 5 at altitude zi

= A random normal distributed number with mean zero

and unit standard deviation.

30
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Figure 4.10 and 4.11 show the mean and standard deviation of

50 Monte Carlo runs of elevation errors after compensation.

The same conditions are assumed here as those in Figures 4.6 -

4.9. It is interesting to note that the mean error is very

close to the bias presented in Fig. 4.6 for the deterministic

case The standard deviation is less than 200 Urad at 1 ele-

vation angle for the worst case.

4.4 Geometric Considerations

From the results presented in this section, it is

seen that refraction errors become much more significant at

low elevation angles. The elevation angle is a function of

target and sensor altitudes and the distance between them as

shown in Figure 4.12.
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Fig. 4.10 The mean of elevation errors after compensation for
a statistical atmosphere model.
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Fig. 4.11 The standard deviation of elevation errors after
compensation for a statistical atmosphere model.
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Fig. 4.12 The elevation angle of target as a function of
target altitude and range to a sensor at 15 km altitude.
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V. SUMMARY AND CONCLUSIONS

A formula which can be used to compute the refrac-

tion error of an object at a finite range in a given atmos-

phere is derived. An algorithm which obtains an approximate

solution of the formula is presented. Sensitivities of the

bias error to the range and/or atmospheric model used in the

compensation scheme are also presented. A statistical model

which simulates the effects of the refraction errors due to

fluctuations in the atmospheric temperature and pressure is

presented. Simulation results are presented. From various

sensitivity studies presented here, it is important to

conclude that the most important portion of the bias error is

due to the range mismatch. The bias error can be minimized by

carefully selecting a reference range within the operational

range of the sensor.

A major conclusion from the results presented above

is that refraction errors are most serious at low elevation

angles.
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